Convert the polar equation $r^2 = 2 - 5\sin 2\theta$ to rectangular, and simplify as shown in the website handout. SCORE: /4 PTS NOTE: Your final answer should NOT have fractions, radicals, nor negative or fractional exponents. $r^2 = 2 - 5(2\sin\theta\cos\theta)$

$$r^{2} = 2 - 10 \sin \theta \cos \theta$$
 $r^{2} = 2 - 10 (4)(x)$
 $r^{2} = 2 - \frac{10 \times 40}{2}$
 $r^{4} = 2r^{2} - 10 \times 40$

$$\frac{(x^2+y^2)^2 = 2(x^2+y^2)-10xy}{(x^2+y^2)^2 = 2x^2-10xy+2y^2}$$

SEE ALTERNATE SOLUTION BELOW GRADE AGAINST ONLY I VERSION

Convert the polar equation
$$r^2 = 2 - 5\sin 2\theta$$
 to rectangular, and simplify as shown in the website handout.

NOTE: Your final answer should NOT have fractions, radicals, nor negative or fractional exponents.

$$r^2 = 2 - 5 (2\sin\theta\cos\theta)$$

$$r^2 = 2 - 10 \sin\theta\cos\theta$$

$$r^4 = 2r^2 - 10 (r\sin\theta)(r\cos\theta)$$

$$(x^2 + y^2)^2 = 2(x^2 + y^2) - 10yx$$

$$(x^2 + y^2)^2 = 2x^2 - 10xy + 2y^2$$

Consider the graph of the polar equation $r = 6 - 9\cos\theta$. \bigcirc

SCORE: /6 PTS

Fill in the blanks.

[a]

[ii]

[iii]

MUST HAVE BUTH WORDS FOR ANY
POINTS

- The shape of the graph is a/an LIMACON WITH I
 - The graph DOES pass through the pole.

does / does not

Find the rectangular coordinates of the

(rectangular coordinates)

[b] Sketch the graph on the grid provided above. You must provide a scale for the axes & plot all points from part [a][iii] above. The graph of the polar equation $r = 4\sqrt{3} - 8\cos 3\theta$ is symmetric only over the polar axis.

SCORE: ____/ 5 PTS

[a] What is the minimum interval of the graph you need to plot first, before using reflections to draw the rest of the graph?

[b]

$$0 = 4\sqrt{3} - 8\cos 3\theta$$

$$0 \le \theta \le \pi$$

$$3\theta = \frac{1}{6}, \frac{1}{6}, \frac{1}{6}$$

$$0 \le \theta \le \pi$$

$$0 \le 3\theta \le 3\pi$$

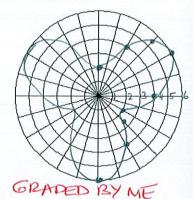
The $(r, \pi - \theta)$ test is the only test that indicates that the graph of $r = 4 + 2\sin 3\theta$ is symmetric. The graph passes through the polar points (4, 0), $(6, \frac{\pi}{6})$, $(5.4, \frac{\pi}{4})$, $(4, \frac{\pi}{3})$ and $(2, \frac{\pi}{2})$.

SCORE: _____/ 6 PTS

[a] What is the minimum interval of the graph you need to plot first, before using reflections to draw the rest of the graph?

[b] Find the value of r (rounded to 1 decimal place) for all other common angles in the minimum interval in part [a].

You do <u>NOT</u> need to find r for the angles given in the original problem description. **NOTE:** You do NOT need to show work, only answers.


$$\frac{\theta}{-\overline{\xi}} = \frac{r}{2} = 4 + 2 \text{sm}(-\underline{\xi}) = 4 + 2 \cdot 1$$

$$-\underline{4} = 2 \cdot 6 \approx 4 + 2 \text{sm}(-\underline{\xi}) = 4 + 2 \cdot \underline{\xi} = 4 - 1$$

$$-\underline{5} = 4 + 2 \text{sm}(-\underline{\eta}) = 4 + 2 \cdot 0$$

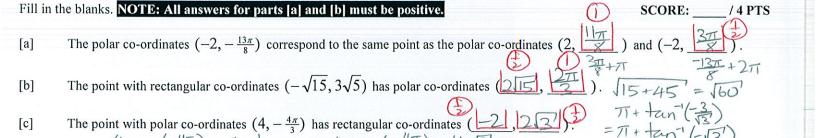
$$-\underline{7} = 4 + 2 \cdot 1$$

$$-\underline{7} = 4 + 2 \cdot 1$$

[c] Sketch the graph on the grid provided above. You must provide a scale for the polar axis & plot all points given and found.

Consider the graph of the polar equation $r = 5 - 3\sin 4\theta$.

SCORE: _____/ 5 PTS


NOTE: The $(-r, \pi-\theta)$, $(r, \pi-\theta)$ and $(r, -\theta)$ tests do NOT show that the graph is symmetric

POLAR AXIS $\theta = \frac{\pi}{2}$ POLAR AXIS

Using the information above, and the tests and shortcuts shown in lecture, test if the graph is symmetric over the pole, the polar axis, and/or $\theta = \frac{\pi}{2}$. State your conclusions in the table. NOTE: Run as FEW tests as needed to prove your answers are correct.

POLE (MITHO):	0= \(\frac{1}{2} \left(-r_1 - \theta \right);
Dr=5-3sin4(17+0)	-r=5-35m4(-0)0
r=5-3 sin (411+40)	-r=5+3sm40 r=-5-3sm40
r= 5-3 (sin47) cos40+	-cos4715114D)
Dr= 5 2 - 110	

Type of symmetry	Conclusion
Over the polar axis	NO CONCLUSION
Over $\theta = \frac{\pi}{2}$	NO CONCLUSION
Over the pole	SYMMETRIC

